
EXTRACTING PROTEIN-LIGAND INTERACTIONS FROM THE BIOMEDICAL

LITERATURE USING DEEP LEARNING APPROACHES

by

Atakan Yüksel

B.S., Computer Engineering, Bilkent University, 2015

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2019

ii

EXTRACTING PROTEIN-LIGAND INTERACTIONS FROM THE BIOMEDICAL

LITERATURE USING DEEP LEARNING APPROACHES

APPROVED BY:

Assoc. Prof. Arzucan Özgür

(Thesis Supervisor)

Assoc. Prof. Elif Özkırımlı Ölmez

(Thesis Co-supervisor)

Assist. Prof. Fatma Başak Aydemir

Assist. Prof. Öznur Taştan Okan

DATE OF APPROVAL: 11/07/2019

iii

ACKNOWLEDGEMENTS

I would like to thank my mother Çiğdem Yüksel, my father Hikmet Yüksel and

my girlfriend Büşra Koç for supporting me mentally when I’m feeling down.

I want to express my gratitude to my supervisor Arzucan Özgür and co-supervisor

Elif Özkırımlı Ölmez for always helping me to pursuit my goals. It was my privilege

to be their mentee.

iv

ABSTRACT

EXTRACTING PROTEIN-LIGAND INTERACTIONS FROM

THE BIOMEDICAL LITERATURE USING DEEP

LEARNING APPROACHES

Protein-ligand interactions play crucial roles in living organisms, thus they at-

tract many researchers from various disciplines. There are protein-ligand interaction

databases that provide information to researchers in a suitable format. These databases

extract the interactions manually from biomedical literature but the extraction pro-

cess is becoming harder each day because of the increase in the number of biomedical

publication, thereby the need for an automated extraction system has arisen. The

aim of this thesis is to fulfill this need via deep learning models. This thesis includes

performance analysis of Convolutional Neural Network (CNN) and Bidirectional Long

Short Term Memory (BiLSTM) Networks for the task of protein-ligand interaction

extraction. Comparison of features in terms of their effect on the performance of the

models is also included in the thesis. The gold standard corpus that is created for

BioCreative VI ChemProt task is selected as our dataset for training and evaluation of

our models. Word embeddings, distance embeddings, part of speech (POS) tags and

inside outside beginning (IOB) chunk tags are used as features in the models. The

grid search algorithm is applied to find the optimal hyperparameters for each model

in the experiments. The best models and input representations are selected via using

the development set then they are evaluated on the test set. Based on the results on

the test set, we concluded that BiLSTM performs better than CNN for each evaluated

feature setting.

v

ÖZET

DERİN ÖĞRENME YAKLAŞIMLARI İLE BİYOMEDİKAL

LİTERATÜRÜNDEN PROTEİN-LİGAND

ETKİLEŞİMLERİNİ ÖĞRENME

Protein-ligand etkileşimi canlı organizmalarda çok önemli bir rol oynar, bu ne-

denle çeşitli disiplinlerden birçok araştırmacının ilgisini çeker. Araştırmacılara istenilen

formatta bilgi sağlayan protein-ligand etkileşim veritabanları vardır. Bu veritabanları

manuel olarak biyomedikal literatüründen çıkarılmaktadır ancak biyomedikal alandaki

yayınların sayısındaki artıştan dolayı bu işlem her geçen gün daha da zorlaşmaktadır,

dolayısıyla otomatik olarak protein-ligand etkileşimlerini metinlerden çıkaran bir sis-

teme ihtiyaç duyulmuştur. Bu tezin amacı bu ihtiyacı derin öğrenme modelleri ile

karşılamaktır. Tez, Evrişimli Sinir Ağı (CNN) ve Uzun/Kısa Süreli Belleğin (LSTM)

protein-ligand etkileşimi için performans analizini içerir. Ayrıca, farklı verilerin model-

lerin performansına etkisi bakımından karşılaştırılması da tez kapsamındadır. BioCre-

ative VI ChemProt yarışması için oluşturulan derlemi, modellerimizin eğitimi ve değer-

lendirilmesi için veri seti olarak seçildi. Kelime temsilleri, mesafe temsilleri, cümle

öğelerinin temsilleri ve iç dış başlangıç öbek temsilleri modelde özellik olarak kullanıl-

maktadır. Grid arama algoritması, deneylerde her model için optimal hiperparame-

treleri bulmak için uygulanır. En iyi modeller ve girdi gösterimleri geliştirme seti kul-

lanılarak seçilir ve sonra test seti ile değerlendirilir. Test setindeki sonuçlara dayanarak

BiLSTM’in her durumda CNN’den daha iyi performans gösterdiği sonucuna vardık.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

2. BACKGROUND . 3

2.1. Protein Ligand Interaction . 3

2.2. Protein Ligand Interaction Databases 6

2.2.1. BindingDB . 6

2.2.2. PDBbind . 8

2.2.3. BindingMOAD . 9

2.3. Deep Learning . 9

2.3.1. Long Short Term Memory . 11

2.3.2. Convolutional Neural Network 13

2.3.3. Word2Vec . 14

2.4. Related Work . 18

3. MATERIALS AND METHODS . 20

3.1. Dataset . 20

3.2. Input Representation . 21

3.3. Machine Learning Models . 26

3.3.1. Bidirectional LSTM . 26

3.3.2. Convolutional Neural Network 29

3.4. Implementation . 30

3.4.1. Data Processing Component . 32

3.4.1.1. Dataset Class . 32

vii

3.4.1.2. Data Interface Class 33

3.4.2. Deep Learning Component . 33

3.4.2.1. BiLSTM model class 33

3.4.2.2. CNN model class . 34

3.4.3. Predictor . 34

3.4.4. Drivers . 35

3.4.4.1. 5x2 Cross Validation Paired t test 35

3.4.4.2. Grid Search . 35

4. EXPERIMENTS AND RESULTS . 36

4.1. Training Domain of Word Embeddings 36

4.1.1. Bidirection LSTM . 37

4.1.2. Convolutional Neural Network 39

4.2. Trainable Word Embeddings . 40

4.2.1. Bidirectional LSTM . 41

4.2.2. Convolutional Neural Network 42

4.3. Position Embedding Experiments . 43

4.3.1. Bidirectional LSTM . 44

4.3.2. Convolutional Neural Network 45

4.4. POS Tag Embedding Experiments . 47

4.4.1. Bidirectional LSTM . 48

4.4.2. Convolutional Neural Network 49

4.5. IOB Chunk Embedding Experiments 51

4.5.1. Bidirectional LSTM . 51

4.5.2. Convolutional Neural Network 53

4.6. Test Set Evaluations . 55

5. CONCLUSION . 58

REFERENCES . 61

viii

LIST OF FIGURES

Figure 1.1. Number of indexed articles versus Fiscal year 1

Figure 2.1. Core structure of an amino acid. 3

Figure 2.2. Eclipsed and staggered conformations of ethane. 5

Figure 2.3. Example perceptron unit. 10

Figure 2.4. LSTM cell with two gates. 11

Figure 2.5. LSTM cell with three gates. 12

Figure 2.6. Simple convolution operation. 13

Figure 2.7. Simple max pooling operation. 14

Figure 2.8. Word2vec implementation architecture overview. 14

Figure 3.1. Sample Biocreative entity corpus. 21

Figure 3.2. Sample Biocreative relation corpus. 21

Figure 3.3. Example one hot representation of the word “right”. 22

Figure 3.4. Steps of obtaining candidate relations from raw abstract data. . . 23

Figure 3.5. Sample input representation. 25

ix

Figure 3.6. Sample sentence image. 26

Figure 3.7. BiLSTM model that is used in the thesis work. 28

Figure 3.8. CNN model that is used in the thesis work. 31

Figure 3.9. System overview. 32

x

LIST OF TABLES

Table 2.1. Best scores for each team in BioCreative VI task ChemProt. 18

Table 3.1. Distribution of Biocreative dataset. 20

Table 3.2. List of part of speech tags. 24

Table 3.3. BiLSTM model hyperparameters. 28

Table 3.4. CNN model hyperparameters. 30

Table 4.1. Computing environment. 36

Table 4.2. Word2vec network parameters. 37

Table 4.3. Results of word embedding comparison with BiLSTM. 38

Table 4.4. BiLSTM model parameters used in word embedding comparison. . 38

Table 4.5. CNN model parameters used in word embedding comparison. . . . 39

Table 4.6. Results of word embedding comparison with CNN. 40

Table 4.7. Results of trainable vs. fixed word embedding comparison with

BiLSTM. 41

Table 4.8. BiLSTM parameters in trainable vs. fixed word embedding com-

parison. 42

xi

Table 4.9. CNN parameters in trainable vs. fixed word embedding comparison. 42

Table 4.10. Results of trainable vs. fixed word embedding comparison with CNN. 43

Table 4.11. Selected BiLSTM grid search results for position embedding. . . . 44

Table 4.12. BiLSTM grid search space for position embedding experiments. . . 44

Table 4.13. Results of position embedding experiments with BiLSTM. 45

Table 4.14. Selected CNN grid search results for position embedding. 46

Table 4.15. CNN grid search space for position embedding experiments. 46

Table 4.16. Results of position embedding experiments with CNN. 47

Table 4.17. Results of POS tag embedding experiments with BiLSTM. 48

Table 4.18. Selected BiLSTM grid search results for POS tag embedding. . . . 49

Table 4.19. BiLSTM grid search space for POS tag embedding experiments. . . 49

Table 4.20. CNN grid search space for POS tag embedding experiments. 50

Table 4.21. Results of POS tag embedding experiments with CNN. 50

Table 4.22. Selected results of the CNN grid search for POS tag embedding. . 51

Table 4.23. Results of IOB tag embedding experiments with BiLSTM. 52

Table 4.24. BiLSTM grid search space for IOB tag embedding experiments. . . 52

xii

Table 4.25. Selected BiLSTM grid search results for IOB embedding. 53

Table 4.26. Selected CNN grid search results for IOB embedding. 53

Table 4.27. CNN grid search space for IOB tag embedding experiments. 54

Table 4.28. Results of IOB tag embedding experiments with CNN. 54

Table 4.29. Evaluation of selected best models on the test set. 56

Table 4.30. Average precision of selected models on the test set. 56

Table 4.31. The selected best BiLSTM model. 56

Table 4.32. The selected best CNN model. 57

xiii

LIST OF SYMBOLS

bp Bias value of perceptron unit p

ct State value of LSTM unit at time t

ft Forget gate value of LSTM unit at time t

ht Output value of LSTM unit at time t

it Input gate value of LSTM unit at time t

kd Dissociation constant

ki Inhibition constant

ot Output gate value of LSTM unit at time t

vhi Weight from input node i to hidden unit h

wjh Weight from hidden unit h to output unit j

xp Input value of perceptron p

yp Output value of perceptron p

zh Value of hidden unit h in word2vec

σ Sigmoid function

xiv

LIST OF ACRONYMS/ABBREVIATIONS

ANN Artificial neural network

BiLSTM Bidirectional long short term memory

CNN Convolutional neural network

CRF Conditional random fields

EC50 Half maximal effective concentration

GAN Generative adversarial network

IC50 Half maximal inhibitory concentration

IOB Inside outside beginning

LSTM Long short term memory

ML Machine learning

MLP Multilayered perceptron

NLP Natural language processing

NMR Nuclear magnetic resonance spectroscopy

POS Part of speech

ReLU Rectified linear unit

RNN Recurrent neural network

Tanh Hyperbolic tangent

1

1. INTRODUCTION

Knowledge regarding the interactions between ligands and proteins is indispens-

able for biomedical research and drug discovery. The knowledge is extracted from pub-

lished articles in biomedical domain manually and then stored in structural databases.

The process of extracting protein-ligand interactions from the biomedical literature

is getting difficult because of the increasing number of published biomedical articles.

Figure 1.1 depicts the number of indexed articles by Medline [1]. As observed in Figure

1.1, there is an increasing trend in the number of articles that are indexed by Medline

for the previous 25 years. The situation leads to a need for an automatic way of ex-

tracting relations from biomedical literature. The aim of this thesis is to create deep

learning models for biomedical relation extractions and analyze the effects of different

linguistic features.

Figure 1.1. Number of indexed articles versus Fiscal year

Currently, there are various databases that provide information about protein-

ligand interactions in a structural format: BindingDB, PDBbind, BindingMOAD [2–5].

These systems extract the interactions manually from biomedical literature. They scan

the articles from selected journals, extract relations and then add the relations to the

system. The current databases can only cover selected journals. In order to increase

2

the range of scanning, an automated system is required. Deep learning models can be

trained to recognize these interactions from raw biomedical text. This thesis focuses

on finding the optimal deep learning method with the optimal input representation.

BiLSTM and CNN are selected as our deep learning models. There are various features

used in the field of Natural Language Processing (NLP), some features are more useful

than the others for specific tasks. Word embeddings, distance embeddings, POS tag

embeddings and IOB chunk tag embeddings are used as features. Various experiments

are conducted in order to compare the models.

3

2. BACKGROUND

2.1. Protein Ligand Interaction

Ligands and proteins are chemical compounds that satisfy predefined rules. Pro-

tein is a macromolecule that is a sequence of amino acids and exists in organisms.

Amino acid is an organic compound. Chemicals that contain Carbon element are

called organic compound. Amino acid should contain Amine and Carboxyl group at-

tached to Carbon element. Our focus is Proteinogenic amino acids which means protein

creating. There are over 500 amino acids that can be found in nature. However, 20 of

them are directly encoded by human genome. Core structure of an amino acid can be

seen in the following Figure 2.1. Left part of α-carbon is amine group which is (-NH2)

and right part of α-carbon is carboxyl group which is (-COOH). R represents the side

chains in the amino acid.

Figure 2.1. Core structure of an amino acid.

Ligand is a small compound that binds to a protein with non-covalent bond

(intermolecule bonds). The idea of covalent and non-covalent bonding is directly related

to electronegativity and basic structure of an atom. An atom consists of a nuclei and at

least one electron attached to it. There is at least one proton and neutron in the nuclei.

Atoms try to fill their last energy level and want to complete their farthest energy level

with 8 electrons. There are different orbitals defined in the atom structure: s, p, d,

f. S orbital holds 2 electrons and p orbital holds 6 electrons. Atoms share electrons

in order to fill their last orbital and this sharing is called as covalent bond which

4

is interatomic binding. Electronegativity is a property of an atom that defines how

much the atom wants to obtain an electron. Electronegativity is proportional to the

number of valence electrons and distance of the last orbital to nuclei thus Fluorine is

the most electronegative element. Non-covalent bond is a binding between molecules

not between atoms. For example; water molecule (H2O) is formed with a polar covalent

bond. Oxygen and Hydrogen atoms share their atoms to fill their last energy level.

However, Oxygen is much more electronegative than Hydrogen thus it pulls electrons

to its nuclei and makes itself positive charged and makes Hydrogen negative charged

thus this binding is called as polar covalent bond. When multiple water molecules come

together, they bind to each other because of these polarized shape of water molecule;

negative charged Hydrogen atoms are connected to positive charged Oxygen atoms

because of electrostatic forces and we call it Hydrogen bond.

Proteins and ligands bind with intermolecule bonds which do not contain elec-

tron sharing. There are some covalent bonds that occur between proteins and ligands

but they are not common. Proteins play many critical roles in human body and their

function is mostly related to their three dimensional structure [6]. There are two meth-

ods to obtain the structure of a protein: Nuclear Magnetic Resonance Spectroscopy

(NMR) and X-Ray Crystallography [7]. The conformation of a protein changes with

binding of a ligand. Protein ligand binding is crucial for human body thus the binding

mechanism and the structure of the protein attracts many researchers from different

disciplines. For example, hemoglobin is a protein in red blood cells and it transports

Oxygen molecules across the body. In this case, Oxygen molecule can be counted as a

ligand and hemoglobin is a protein. The previous example emphasizes the importance

of protein ligand interaction in living organisms.

Protein’s function is highly related to its conformation. Conformation is the spa-

tial arrangements of atoms in the molecule. In order to make this idea clearer, ethane

molecule can be used as an example. Ethane molecule consists of 2 Carbon atoms and

6 Hydrogen atoms (H3C-CH3). Each dihedral angle corresponds to a different confor-

mation of ethane. Potential energy of the molecule fluctuates between [3,0] kcal/mol.

5

The potential energy of a molecule is an important concept because it is used to cal-

culate binding affinity of a protein ligand complex in a theoretical way by computers.

There are two specific conformations of ethane: eclipsed and staggered. Both of the

conformations are depicted in Figure 2.2. The change in energy is caused because of

electrostatic forces. Hydrogen atoms are positive charged because of polar covalent

bond. The molecule has more potential energy in eclipse formation because Hydrogen

atoms are closer to each other and the cause of potential energy is called torsional

strain or eclipsing strain. Conformation of a molecule is important to calculate the

Figure 2.2. Eclipsed and staggered conformations of ethane.

potential energy of the molecule and potential energy is used to calculate protein lig-

and binding affinity. We can calculate free binding energy by first-principles quantum

mechanical simulation by treating each molecule explicitly in the solvent. Also, we

can choose an easier path by treating water molecules implicitly and express them

with hydrophobic effect and dielectric screening terms in the energy equation. The

energy equation contains terms that represent energy caused by bond stretching, angle

bending, torsion strain, improper dihedral, Van der Waals interactions and Coulombic

interactions [8]. Protein ligand affinities can be measured experimentally and there are

four major metrics: Dissociation constant (kd), Inhibition constant (ki), Half maximal

effective concentration (EC50) and Half maximal inhibitory concentration (IC50). kd

is the ratio of ligand concentration to the complex concentration, similarly ki is the

ratio of inhibitor concentration to the complex concentration. IC50 shows how much

ligand is needed to inhibit 50 percent of protein’s activity. EC50 is opposite of IC50,

it measure how much ligand is needed to stimulate protein’s activity by 50 percent.

6

2.2. Protein Ligand Interaction Databases

There are three main databases that provide protein-ligand interaction data:

PDPBind, BindingDB, BindingMOAD.

2.2.1. BindingDB

BindingDB is a publicly accessible protein ligand interaction database that is

maintained by Skaggs School of Pharmacy and Pharmaceutical Sciences UC San Diego

[2]. This database provides affinity data and experiment conditions (pH, temperature

etc.) to medicinal chemists, computational chemists, and pharmacologists. BindingDB

collects data from literature directly and continuously. Each BindingDB data entry

contains one protein target, one compound, affinity values and information of the

publication. If there are available experimental conditions, they are also included in

the database. BindingDB collects data from patents too which is not included in other

databases. All data collection is done manually by BindingDB staff. BindingDB scans

the following scientific journals.

• ACS Chemical Biology

• ChemBioChem

• Chemical Biology and Drug Design

• Chemistry and Biology

• Nature Chemical Biology

• ACS BioChemistry

• Bioorganic Chemistry

• Journal of Biological Chemistry

BindingDB also imports data from PubChem, ChEMBL, PDSP Ki and CSAR

databases. Another source of BindingDB is users, the system allows users to add ex-

perimental data to the database. After binding data are collected from the original

source, another BindingDB staff checks the data in order to increase the reliability of

7

the dataset. BindingDB also sends emails to the authors of the original publications

to check data in the database. Moreover, the system contains binding data that are

obtained by using computational modelling. BindingDB is different from other ma-

jor databases: PDBBind and BindingMOAD. PDBBind and BindingMOAD contain

binding affinities of proteins that exist in PDB but BindingDB does not restrict the

database to PDB. BindingDB contains hyperlinks to the following databases.

• PubMed and US Patents online.

• UniProt, BindingMOAD and DrugBank for protein details.

• ChEMBL, PubChem, UniChem and ZINC for compound details.

• AntibodyPedia for antibodies against protein targets.

• Reactome for biomolecular pathway of proteins.

In addition, the crystal structures in PDB are linked to BindingDB for detailed

binding information. This link is valid in the reverse direction as well. BindingDB

provides data in table format, each row corresponds to a protein-ligand complex. The

table contains the following columns;

• Target information

• Ligand information

• Links to protein information

• Links to ligand information

• Link to complex information

• Experiment data

BindingDB provides various ways to search the database. First way is to search

via proteins which is text-based search. The database also allows to search via com-

pounds. The system has two main pages about compounds: FDA-approved prod-

ucts page and important compounds pages. Users can search compounds by entering

SMILES or InChI strings. Also, users can search via article, patent, author, institution

data.

8

2.2.2. PDBbind

PDBbind is another protein-ligand interaction database that is maintained by

Shanghai Institute of Organic Chemistry under mutual agreement with University of

Michigan. PDBbind starts to obtain data from PDB unlike BindingDB. First, it obtains

the complex data from PDB. PDBbind developed its own classification scheme on a

given structural information. There are four valid complexes: (i) complexes formed

between protein and small-molecule ligand, (ii) complexes formed between nucleic acid

and small-molecule ligand, (iii) complexes formed between two protein molecules and

(iv) complexes formed between protein and nucleic acid. In order to distinguish valid

organic ligands from other molecules, PDBbind uses a dictionary (Chemical Component

Dictionary) that is also provided by PDB. PDBbind defines protein-protein complex

as at least two peptide chain from different proteins.

After obtaining biomolecular complexes from PDB, PDBbind collects affinity data

from literature. Each PDB structure file contains a “primary reference” data which

is the referenced publication. PDBbind starts with scanning this article. In order

to obtain corresponding experimental settings and binding assay method, they use a

script that scans an article and look for keywords provided by PDBbind. PDBbind

looks for three major measures for binding affinity: dissociation constant Kd, inhibition

constant Ki and concentration at 50% inhibition (EC50). One of the motivations of

PDBbind is to provide binding data for molecular docking and structure-based drug

design. Not all entries in the database are complete, some entries lack information

thus PDBbind provides a smaller “refined set” for designing and validating molecular

docking and scoring methods. There are rules that are applied when preparing “refined

set”, the current rules are described in detail in [3].

The database is updated in annual basis with respect to PDB. In the first week

of new year, entire PDB is downloaded and processed. Binding data is increased

around 15% each year. The database is used for various research areas. For example;

AutoDock used PDBbind in their system. AutoDock is a molecular docking and virtual

9

screening program created by Scripps Research [9]. PDBbind also developed CASF

benchmark [3]. This benchmark aims to provide a evaluation of scoring functions [10].

The system is also used for structure based drug design [11].

2.2.3. BindingMOAD

BindingMOAD is another binding database that is created by Carlson Lab at

University of Michigan [4, 5]. BindingMOAD use top-down approach to curate the

dataset. The term “top-down” approach is a term they use in their article to describe

their method. They choose to start with protein-ligand complexes that have 3D struc-

ture in PDB. They start with PDB search like PDBbind database. After they obtain

valid protein-ligand structures, they read the literature for that complex, protein and

ligand. Their aim is to validate their analysis on the complex and get the affinity data

from the article. BindingMOAD also creates functional groups to compare related

systems.

2.3. Deep Learning

Deep Learning is a branch of Machine Learning (ML) that is based on Artificial

Neural Network (ANN). Artificial neural networks are inspired by biological neural

networks and each neuron is called a perceptron in artificial neural networks.

The idea of the perceptron is proposed by Frank Rosenblatt in 1958 [12]. A single

perceptron is depicted in Figure 2.3 and mathematical representation of a perceptron

is yp = W T
p xp + bp where Wp is the weight tensor of the unit, xp is the input tensor to

the unit, bp is the bias tensor of the unit and yp is the output of the unit. A single per-

ceptron is not able to solve basic problems. For example, a single perceptron can not

represent a XOR gate. The problem is demonstrated by Minsky and Papert in a book

titled “Perceptrons: an introduction to computational geometry” [13]. Perceptrons are

powerful when they are connected to each other thus Multilayered Perceptron (MLP)

architecture is required to solve complex problems. Training a MLP requires backprop-

10

agation algorithm which is proposed by David E. Rumelhart, Geoffrey E. Hinton and

Ronald J. Williams [14]. Intuition of the backpropagation algorithm is to propagate

the error in the output layer to the input layer. With the backpropagation algorithm,

number of research on artificial neural networks increased rapidly. However, in order to

make MLP effective, non-linearity should be applied in each layer. Otherwise, adding

layer to the network will be ineffective. Non-linear functions are applied to the output

of the perceptron units and these functions are called activation functions. There are

various activation functions currently used in the field of deep learning such as Rectified

Linear Unit (ReLU), Sigmoid and Hyperbolic Tangent (Tanh).

Figure 2.3. Example perceptron unit.

Today, we have various neural network approaches: Recurrent Neural Network

(RNN), Convolutional Neural Network (CNN) and Generative Adversarial Network

(GAN). RNN suffers from exploding and vanishing gradient problem, the problem is

explored by Sepp Hochreiter in his master thesis [15]. Long Short Term Memory is

proposed to solve the problem by Sepp Hochreiter [16]. Long Short Term Memory

(LSTM) and Convolutional Neural Network are selected as our models in this study.

11

2.3.1. Long Short Term Memory

Long Short Term Memory (LSTM) is proposed to solve vanishing and exploding

gradient problem in recurrent neural networks. The idea of LSTM is to adjust per-

ceptron outputs via gates. The first proposed LSTM cell consists of two gates: input

and output gate [16]. Figure 2.4 depicts the first LSTM cell with two gates. Each gate

and input unit takes the same input: xt and ht−1. The input is represented by xt and

previous value of LSTM cell is represented by ht−1.

Figure 2.4. LSTM cell with two gates.

In 1999, a new gate is proposed to the initial LSTM cell that is proposed by Felix

Gers et al. [17]. The LSTM cell with three gates is depicted in Figure 2.5. Currently,

there are various implementations of LSTM cell based on different priorities. For

example, there are LSTM block cell, LSTM block fused cell, LSTM cell with peephole

in TensorFlow API provided by Google [18]. LSTM block cell is implemented based

on work of Zaremba et al. [19]. LSTM cell with peephole is implemented based on

works of Sak et al. [20]. The mathematical formulation for a LSTM cell is shown in

Equations from 2.1 to 2.5.

12

Figure 2.5. LSTM cell with three gates.

ft = σ(Wf · xt + Vf · ht−1 + bf) (2.1)

it = σ(Wi · xt + Vi · ht−1 + bi) (2.2)

ot = σ(Wo · xt + Vo · ht−1 + bo) (2.3)

ct = ft · ct−1 + it · σ(Wc · xt + Vc · ht−1 + bc) (2.4)

ht = ot · σ(ct) (2.5)

13

2.3.2. Convolutional Neural Network

Convolutional Neural Network (CNN) takes a different approach than conven-

tional neural network architectures. Convolution operation is what makes CNN differ-

ent from other approaches. The operation is mainly used in the area of signal processing

in order to modify a signal with respect to a filter. The operation is basically mov-

ing a signal over another signal and the moving signal is called filter or kernel. The

mathematical representation of convolution operation is Equation 2.6.

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (2.6)

The convolution operation in CNN is similar to the operation in signal processing, we

select a filter tensor and move the filter tensor over our input tensor. We select filter size

as hyperparameter that is not optimized by the network. Our filter tensor represents

weights and the network tries to optimize these weights. The intuitive approach to

CNN is that each filter is optimized to recognize a unique shape. For example, if the

input consists of face photos, then the filter should be optimized to recognize nose and

some other filter should be optimized to recognize eyes. Modern CNN architectures

are proposed by Yann LeCun et al. [21] and these neural networks called LeNet in

the article. LeNet consists of convolution and max pooling layers. Convolution layer

applies the selected number of filters to the input and returns a new tensors.

Figure 2.6. Simple convolution operation.

14

Convolution operation in CNN is depicted in Figure 2.6. After convolution layer,

we need to apply subsampling method and the method should be non-linear in order

to be useful in the neural network. LeNet uses max pooling operation which is still

mostly used subsampling operation in CNN architectures. Max pooling operation is a

non-linear operation that aims to subsample the input tensor. A filter size is selected

and the selected filter moves over the input, selects the maximum value in the area of

filter. Max pooling operation is depicted in Figure 2.7.

Figure 2.7. Simple max pooling operation.

2.3.3. Word2Vec

Word2vec algorithm is basically training a Multilayered Perceptron to predict

words that occur in a selected window with the input token. The weights in the

network are used as word embeddings. The overview of the network is shown in Figure

2.8. There are three layers in the architecture: input, hidden and output.

Figure 2.8. Word2vec implementation architecture overview.

15

Input layer represents the input values, hidden layer applies dot product to the

input with hidden layer weights and we apply two operations in the output layer: dot

product and softmax function. Dynamics of the network is described in Equations 2.7,

2.8, and 2.9.

zh = vTh x (2.7)

otj =
H∑

h=1

wjhz
t
h + wj0 (2.8)

ytj =
exp(otj)∑
k exp(o

t
k)

(2.9)

The equations 2.8 and 2.9 are applied in the output layer. Equation 2.8 is dot

product in the output layer and Equation 2.9 is the softmax function. In the hidden

layer, we do not apply any activation function.

Output layer consists of all words in dictionary thus applying a softmax operation

in output layer is a computationally heavy operation. Hiererchical softmax is proposed

to increase performance of the output layer. Error function is cross entropy which is

Equation 2.10.

E(W,V |X) = −
∑
t

∑
i

rtilogy
t
i (2.10)

We use the backpropagation algorithm to update the weights in the network.

We take derivation of error function with respect to the weights and obtain update

functions. There are two different set of weights in the network: hidden layer weights

and output layer weights. Hidden layer weights are shown with vih where i represents

input index and h represents hidden unit index. Output layer weights are shown with

wjh where j is output unit index and h is hidden unit index.

16

First, we derive the error function with respect to the output layer weights which

is wjh and obtain the update function for wjh. Our update function for wjh is

∆wjh = −µ ∂E

∂wjh

(2.11)

∂E/∂wjh can be written as Equation 2.12 using chain rule.

∂E

∂wjh

=
∂E

∂yj
· ∂yj
∂oj
· ∂oj
∂wjh

+
J∑

k 6=j

∂E

∂yk
· ∂yk
∂oj
· ∂oj
∂wjh

(2.12)

The required partial derivations are listed below:

∂E

∂yj
= −rj ·

1

ln2
· 1

yj

∂E

∂yk
= −rk ·

1

ln2
· 1

yk

∂yj
∂oj

= yj · (1− yj) (2.13)

∂yk
∂oj

= −yj · yk
∂oj
∂wjh

= zh (2.14)

We can obtain the Equation 2.15 via replacing Equation 2.12 with partial derivations

in Equation 2.13 and 2.14.

∂E

∂wjh

=
[
− rj ·

1

ln2
· 1

yj
· yj · (1− yj) · zh

]
+

J∑
k 6=j

rk ·
1

ln2
· 1

yk
· yk · yj · zh (2.15)

Then we simplify Equation 2.15.

∂E

∂wjh

=
1

ln2

[
−
(
rj ·

1

yj
· yj · (1− yj) · zh

)
+

J∑
k 6=j

rk ·
1

yk
· yk · yj · zh

]
=

1

ln2

[
−
(
rj · (1− yj) · zh

)
+

J∑
k 6=j

rk · yj · zh
]

=
1

ln2

[
− rj · zh +

(
zh · yj

(
rj +

J∑
k 6=j

rk

)]
=

1

ln2
· zh ·

(
yj − rj

)

17

We could write update function for wjh as in Equation 2.16.

∆wih = −µ · 1

ln2

∑
t

zth ·
(
ytj − rtj

)
(2.16)

After obtaining update function for wjh, it is easier to obtain vhi. We modify the

Equation 2.12 and obtain Equation 2.17.

∂E

∂vhi
=
∂E

∂yj
· ∂yj
∂oj
· ∂oj
∂zh
· ∂zh
∂vhi

+
J∑

k 6=j

∂E

∂yk
· ∂yk
∂oj
· ∂oj
∂zh
· ∂zh
∂vhi

(2.17)

We calculate the required partial derivations as follows;

∂E

∂yj
= −rj ·

1

ln2
· 1

yj

∂E

∂yk
= −rk ·

1

ln2
· 1

yk

∂yj
∂oj

= yj · (1− yj) (2.18)

∂yk
∂oj

= −yj · yk
∂oj
∂zh

= wjh
∂zh
∂vhi

= xi (2.19)

We replace Equation 2.17 with Equations 2.18 and 2.19 then obtain Equation 2.20.

∂E

∂vhi
=
[
− rj ·

1

ln2
· 1

yj
· yj · (1− yj) ·wjh · xi

]
+

J∑
k 6=j

rk ·
1

ln2
· 1

yk
· yk · yj ·wjh · xi (2.20)

We simplify Equation 2.20 in order to get clearer equations.

∂E

∂vhi
=

1

ln2

[
−
(
rj ·

1

yj
· yj · (1− yj) · wjh · xi

)
+

J∑
k 6=j

rk ·
1

yk
· yk · yj · wjh · xi

]
=

1

ln2

[
− rj · wjh · xi + rj · wjh · xi · yj + yj · wjh · xi

J∑
k 6=j

rk

]
=

1

ln2

[
− rj · wjh · xi +

(
wjh · xi · yj

(
rj +

J∑
k 6=j

rk

)]
=

1

ln2
· wjh · xi ·

(
yj − rj

)

18

We could write update function for vih in Equation 2.21.

∆vhi = −µ · 1

ln2

∑
t

wt
jh · xti ·

(
ytj − rtj

)
(2.21)

2.4. Related Work

This thesis work aims to extract relations between chemicals and proteins from

biomedical literature. Biocreative dataset is used in this research and it is obtained from

Biocreative Challenge VI. Biocreative challenge aims to promote research in specific

areas in the field of bioinformatics. In Biocreative VI, ChemProt task is organized in

order to promote research in biomedical relation extraction. The aim in ChemProt

task is to extract relations and label relations with different relation types.

Table 2.1. Best scores for each team in BioCreative VI task ChemProt.

Team ID Precision Recall f1-measure

374 [22] 0.57 0.47 0.51

379 [23] 0.53 0.46 0.49

394 [24] 0.29 0.32 0.30

397 [25] 0.60 0.11 0.18

403 [26] 0.56 0.67 0.61

404 [27] 0.33 0.40 0.37

417 [28] 0.66 0.55 0.60

421 0.16 0.34 0.21

424 [29] 0.67 0.51 0.58

427 [30] 0.26 0.66 0.38

430 [31] 0.72 0.57 0.64

432 [32] 0.47 0.44 0.45

433 [33] 0.63 0.51 0.56

19

However, the focus in our study is to extract relations and label them as no

relation or relation. Gold standard corpus is created for ChemProt task. Dataset is

explained in Section 3.1 in detail. Thirteen teams participated in the task and each

team was allowed to submit five runs at most [34]. The best f1-measure scores for each

team are listed in Table 2.1.

Both conventional machine learning algorithms and deep learning algorithms are

used in the task. The best f1-measure is obtained by work of Peng et al. [31]. The work

is based on ensemble of three different algorithm: CNN, BiLSTM and SVM. In this

thesis, for the CNN architecture, the work of Peng et al. [35] is used as base model and

for the BiLSTM architecture, the work of Kavuluru et al. [36] is used as base model.

20

3. MATERIALS AND METHODS

3.1. Dataset

We used a dataset that is curated for BioCreative challenge. BioCreative is a

contest that aims to assess the state of art methods for various tasks in bioinformatics

domain. In BioCreative VI, chemical protein relation extraction is selected as a task

in the contest. The corpus consists of three files: abstracts, relations and entities.

Abstracts file contains raw abstract text and unique id that is assigned to each abstract.

Entities file contains entity details and entity id that is assigned to each entity with

respect to the abstract that entity occurs. Relations file contains relations between

protein and chemical entities. Table 3.1 shows the distribution of BioCreative dataset

[37]. CPR is an abbreviation for “Predicted chemical-Protein relation” which represents

the relation type. Examples of entities are shown in Figure 3.1 and examples of relations

are shown in Figure 3.2. There are six columns in the Figure 3.1: abstract id, entity

id, entity type, start index, end index, and entity name. There are six columns in the

Figure 3.2: abstract id, relation id, evaluation status, relation type, first argument id,

and second argument id.

Table 3.1. Distribution of Biocreative dataset.

Training Development Test

Document 1020 612 800

Chemical 13017 8004 10810

Protein 12752 7567 10019

CPR:3 768 550 665

CPR:4 2254 1094 1661

CPR:5 173 116 195

CPR:6 235 199 293

CPR:9 727 457 644

21

Figure 3.1. Sample Biocreative entity corpus.

Figure 3.2. Sample Biocreative relation corpus.

3.2. Input Representation

Input representation is a crucial aspect of the Natural Language Processing tasks

because the data is in unstructured format. In order to use natural language as an

input to our models we need to convert natural language data to quantitative data.

There are two main ways to convert words to quantitative data: one-hot representation

and word embeddings such as the ones obtained by the word2vec algorithm [38]. One-

hot representation is a straightforward way to represent words. Let d be the number

of words in our vocabulary then we create a vector with length d for each word. Each

dimension of the vector represents an unique word in the vocabulary. We assign an

unique id to each word and this id represents the dimension of the vector that corre-

sponds to the word. Each word is represented with a vector where only one dimension

is 1 and other dimensions are 0. An example one-hot representation is shown in Figure

3.3. One hot representation has two major drawbacks: sparse representation and no

relation between words. Let d be dictionary size then d − 1 values in the vector are

0 thus one hot representation is a sparse representation. The second drawback of the

representation is that there is no any correlation between words. For example, “justice”

22

Figure 3.3. Example one hot representation of the word “right”.

and “fairness” are words that are strongly correlated with each other because, these

words refer to same idea. In one hot representation the semantic information is not en-

coded to the representation thus there is no any correlation between these two words in

their representation. Word2vec algorithm solves these two problems, it creates a dense

representation for each word and representations of words with semantic correlation

are similar to each other. In our research, word2vec approach is selected to be used in

our research. The next step is to create input from raw BioCreative dataset. Our raw

dataset contains abstracts but abstracts should be converted to a suitable format in

order to be used in relation extraction task. There are various ways to prepare input

to the model. One way is to use whole abstract as an input, the other way is to split

abstracts into sentences and use sentences as separate inputs to the model. The second

approach is selected for data preparation. Sentences are split via NLTK [39].

After obtaining sentences, we have different ways to use the sentence as input.

One way is to use whole sentence, the second way is to use text between entities in the

sentence and the final option is to extend the text between entities with a window size

w. The second approach is selected in our study. The text between entities is called

candidate relation. In order to parse candidate relations, entities in each sentence

are tagged. Entities are listed in the dataset and entity indexes are compared with

sentence indexes in order to find entities in the sentence. The steps of processing

candidate relations are depicted in Figure 3.4.

23

Figure 3.4. Steps of obtaining candidate relations from raw abstract data.

Candidate relation is sequence of words. NLTK is used to tokenize sentences

and obtain tokens. Each token is mapped to a vector. The vector contains various

information: word embedding, position embedding, POS tag embedding, IOB chunk

embedding. Two types of word embeddings are used in this thesis. One is based on

training the word2vec algorithm with biomedical text and is obtained from the work of

Chiu et al. [40]. The other one is obtained by using Wikipedia articles as training set

for word2vec. Position embeddings represents the distance of token to protein entity

and the chemical entity. Part of speech tags are another information that is derived

from text. NLTK is used to obtain part of speech tags and standard part of speech

tags are listed in Table 3.2. Tokens can be combined and chunks can be created.

24

IOB is a way of representing chunks; I represents Inside, O represents Outside and

B represents Beginning. Noun phrases (NP: <DT>? <JJ>* <NN>*), verb phrases

(<V> <NP|PP>*) and prepositional phrases(<P> <NP>) are used for chucking,

regular expression is used. The ? symbol matches if the preceding item occurs zero or

one time and the * symbol matches if the preceding item occurs zero or more times.

An example of prepared input is depicted in Figure 3.5.

Table 3.2. List of part of speech tags.

Label Explanation

NN Singular Noun

NNS Plural Noun

NNP Proper Noun

VBD Past Tense Verb

VBZ 3rd Person Singular Present Tense Verb

VBP Non 3rd Person Singular Present Tense Verb

VBN Past Participle

PRP Pronoun

PRP$ Possesive Pronoun

JJ Adjective

IN Preposition

DT Determiner

For each candidate relation, a nxm matrix is created where n represents length

of candidate relation and m represents embedding size. Each matrix is called sen-

tence image and depicted in Figure 3.6. Each model is supplied with different tensors.

BiLSTM requires three dimensional tensor consists of batch size, sentence length, and

embedding size as input and CNN requires four dimensional tensor containing batch

size, sentence length, embedding size, and channel number as input.

F
ig
ur
e
3.
5.

Sa
m
pl
e
in
pu

t
re
pr
es
en
ta
ti
on

.

26

Figure 3.6. Sample sentence image.

3.3. Machine Learning Models

3.3.1. Bidirectional LSTM

Bidirectional LSTM is an enhanced version of recurrent neural networks. It is

proposed to solve exploding and vanishing gradient problem of the RNN’s [16]. BiL-

STM is selected because of its success in natural language processing tasks.

BiLSTM is a neural network approach that consists of two independent LSTM

units. Each LSTM unit is supplied with the same input sequence. However, their

direction of processing the input is different. Internal dynamics of the LSTM unit is

explained in Section 2.3.1 in detail. The idea of BiLSTM is merely combining two

LSTM units and exploiting the input from both directions. BiLSTM architecture can

also be combined with various different neural networks or conventional machine learn-

ing algorithms such as Conditional Random Fields (CRF). However, these complicated

architectures can increase the need for computing power dramatically thus a plainer

BiLSTM architecture is chosen in this research.

27

BiLSTM architecture is depicted in Figure 3.7. The architecture consists of three

main layers: LSTM layer, max pooling layer, output layer. Firstly, the input is directly

supplied to the LSTM layer. The LSTM layer consists of two main LSTM units and

each unit has n number of hidden units. Each LSTM unit outputs n dimensional

vector for each time t. The LSTM layer is followed by max pooling layer. Let T be the

length of the input sequence and n be the number hidden units for each LSTM unit

then max pooling layer is supplied with T times n dimensional vectors from each LSTM

unit. Max pooling operation selects the maximum value of each dimension through the

time. Max pooling layer outputs two n dimensional vectors. There is a concatenation

operation between the max pooling layer and the output layer. The two n dimensional

vectors are concatenated and supplied to the output layer. The output layer consists

of two nodes, each representing two different outcomes: relation and no relation. The

softmax function is applied to the output nodes in order to normalize the output value

into the [0,1] interval. Softmax function for output node o0 is depicted in Equation 3.1.

yt0 =
exp(ot0)

exp(ot0) + exp(ot1)
(3.1)

Cross entropy function is used to calculate the error between prediction and target

value.

Error =
∑
t

r0 · logy0 + r1 · logy1 (3.2)

Dropout is applied in LSTM layer in order to prevent overfitting. Adam optimizer is

used as an optimization algorithm in our model. Each model parameter is listed in

Table 3.3. Some parameters are selected using the grid search algorithm and some pa-

rameters are selected as fixed parameters. In the optimal case, every hyperparameter

should be selected using the grid search algorithm. However, because of the compu-

tational limitations only a subset of the hyperparameters are selected using the grid

search algorithm.

28

Table 3.3. BiLSTM model hyperparameters.

Parameter Name
Included in

Grid Search
Value

Batch Size No 50

Number of Epoch No 100

Learning Rate No 0.001

Dropout Rate No 0.5

Word Embedding Size No 200

LSTM Hidden Units Yes 128, 256, 512

Position Embedding Size Yes 10, 20, 50, 100

POS Tag Embedding Size Yes 10, 20, 50, 100

IOB Chunk Tag Embedding Size Yes 10, 20, 50, 100

Figure 3.7. BiLSTM model that is used in the thesis work.

29

3.3.2. Convolutional Neural Network

The idea of Convolutional Neural Networks (CNN) is derived from the importance

of localization in deep learning research. A CNN model does not process the whole

input at one step, it divides the input into divisions and then processes each part

independently. Finally, it combines the information that is obtained from each part.

This approach is different from other neural network models thus CNN is selected

as one of the predictor models in our research. CNN is also used in various natural

language processing tasks. There are various CNN architectures in the literature.

Various number of filters and convolution layers can be combined in the network. Also,

different number of fully connected layers can be inserted before and after convolution

layer. Work of Kim et al. is used as base CNN architecture in this thesis [41].

The CNN architecture is depicted in Figure 3.8. Our CNN model consists of three

main layers: convolution layer, fully connected layer and output layer. Input is shaped

into four dimensional tensor before it is supplied into CNN model, input preparation is

discussed in Section 3.2. Firstly, the input is processed by convolutional layer. There

are three different filter sizes in our convolutional layer. Let d be token total embedding

size, then filter sizes are 2xd, 3xd and 4xd. Each filter aims to catch relation between

2, 3 and 4 tokens. Each filter outputs different vectors. Let n be sequence length, then

the first filter (2xd) outputs a vector of size (n− 1)x1. The second filter (3xd) outputs

a vector of size (n− 2)x1 and the third filter (4xd) outputs a vector of size (n− 3)x1.

After convolution layer, output vectors from each filter are concatenated and a single

vector is created. The final vector is supplied into fully connected layer and finally fully

connected layer is connected to output layer. Dropout layer is applied to the network

in order to prevent overfitting. Relu is used as an activation function in fully connected

layer. Softmax is used in output layer in order to normalize output values into interval

of [0,1]. The softmax function is described in Equation 3.1. Cross entropy is used as

error function in the model and it is shown in Equation 3.2. The hyperparameters of

the CNN architecture are listed in Table 3.4. Batch size, number of epochs, learning

rate, dropout rate and word embedding size are selected as fixed hyperparameters in

30

the model. CNN “filter out” parameter represents the number of filters in convolution

layer for each filter size. For example, if CNN “filter out” parameter is selected 100

then there will be 300 filters in total. “FCL hidden unit size” represents the number of

hidden units in the fully connected layer. These parameters are selected to be variable

in grid search and selected optimal parameters for each test.

Table 3.4. CNN model hyperparameters.

Parameter Name
Included in

Grid Search
Value

Batch Size No 50

Number of Epoch No 100

Learning Rate No 0.001

Dropout Rate No 0.5

Word Embedding Size No 200

CNN Filter Out Yes 150, 200, 250, 300, 350

FCL Hidden Unit Size Yes 2048, 4096, 8192

Position Embedding Size Yes 10, 20, 50, 100

POS Tag Embedding Size Yes 10, 20, 50, 100

IOB Chunk Tag Embedding Size Yes 10, 20, 50, 100

3.4. Implementation

Various experiments are conducted in this thesis thus a system for conducting

experiments is implemented. The system that is used for experiments is depicted in

Figure 3.9. There are four main components of the system: data processing, neural

network models, predictor, and driver.

F
ig
ur
e
3.
8.

C
N
N

m
od

el
th
at

is
us
ed

in
th
e
th
es
is

w
or
k.

32

Figure 3.9. System overview.

The data processing component is responsible for reading a raw corpus, creating

candidate relations, and providing data in batches for the models. The neural network

model component is the implementation of the selected models via the Tensorflow

library. The predictor script obtains data from the data component and runs the

neural network models. The driver scripts combine the predictor script and the data

then, run 5x2 cross validation paired t-test or grid search with selected parameters.

3.4.1. Data Processing Component

The data processing component is responsible for converting a raw corpus into

a ready to use dataset. There are two classes in the component: dataset and data

interface. The raw dataset files are processed by the dataset class and candidate

relations are derived. The candidate relations are provided by the data interface in

batches. Word embeddings, POS tag embeddings, IOB tag embeddings and position

embeddings are also prepared by the data interface module.

3.4.1.1. Dataset Class. The dataset class contains two class methods and three static

methods. The class methods are “prepare dataset” and “get dataset”. The main method

is the “prepare dataset” method which parses the raw corpus and creates candidate

33

relations. There are three files in the corpus and each of them is parsed by separate

static methods. The label of the candidate relation is assigned by the static method

“check instance relation”.

3.4.1.2. Data Interface Class. The data interface class is responsible for processing

candidate relations, creating feature embeddings and providing data in batches. Po-

sition embeddings, POS tag embeddings and IOB tag embeddings are initialized ran-

domly via static methods. There are four methods that can be called from outside:

“get batch”, “get embedding information”, “print information” and “write information”.

3.4.2. Deep Learning Component

The deep learning component contains implementation of the BiLSTM and the

CNN models with the Tensorflow library. Each model is implemented by separate

classes. Each model class provides set of common methods such as optimize and

prediction. There are also wrapper methods for simplicity.

3.4.2.1. BiLSTM model class. There are two helper methods in the BiLSTM model.

One is used to initialize the BiLSTM layer and the other one is used to initialize the max

pooling layer in the Tensorflow computation graph. There are two LSTM cells in the

model, one processes data forward and the other one processes data backwards. There

are also two dropout layers for each of the LSTM cells. LSTMBlockCell method is used

for LSTM cell implementation from Tensorflow API. The method is implemented based

on the work of Zaremba et al. [19]. There are various LSTM cells that are provided by

the Tensorflow API. LSTMBlockCell is selected because it is a faster implementation.

Static bidirectional RNN method is used in order to combine these two LSTM cells as

BiLSTM. For the dropout implementation, dropout layer method is selected from the

Tensorflow API. Each LSTM layer contains n hidden units and number of output units

in the BiLSTM layer is 2n. For each sequence, the max pooling operation selects the

maximum value of each hidden unit through time. The prediction method is used to

34

create the part of the computational graph that is required for prediction and called

only once through the life cycle of the module. The prediction part of the computational

graph contains embedding layer, BiLSTM layer, and max pooling layer. The prediction

method returns the node of the computational graph that calculates the values of the

hidden units in the output layer. The optimize method is used to create the part of

the computation graph that is required for optimization and called only once through

the life cycle of the module. The method creates nodes for the loss function and Adam

optimizer in the computational graph. The method returns the node for optimization.

3.4.2.2. CNN model class. The CNN model class has a similar structure to the BiL-

STM model class. There are two helper methods for initialization of the convolution

layer and the max pooling layer. The Conv2d method is used from the Tensorflow

API for convolution operation. ReLU is applied to the output of the convolution layer.

The convolution filters are represented in four dimensions: height, width, number of

channels (depth) and number of filters (filter out). There is also another variable that

defines how much a filter should move, the parameter is conv filter stride. There is also

a bias variable. The prediction method creates part of the computational graph that

is required for making prediction via CNN. The network consists of three convolution

layers, three max pooling layers, a fully connected layer, a dropout layer and an output

layer. The optimize method creates part of the computation graph that is required for

optimizing CNN.

3.4.3. Predictor

The predictor class is used to run a deep learning model with data. Data interface

object reads the data from a raw corpus and provides data in specific number of batches.

The predictor class takes the previously created data interface object as an input. The

selected deep learning model is imported by the predictor class and the input data is

obtained by the data interface class in batches. The predictor object runs the model

on the training set, development set and test set then, prints the evaluation metrics to

an output file.

35

3.4.4. Drivers

There are two driver scripts: “cv run” and “grid search”. Grid search is imple-

mented by “grid search” script. In order to compare different algorithms or features,

5x2 cross validation paired t test is used and it is implemented by “cv run”.

3.4.4.1. 5x2 Cross Validation Paired t test. In order to compare two different meth-

ods, 5x2 cross validation paired t test is used and the test is implemented in “cv run”

script. The script creates a data interface object and a predictor object. For two dif-

ferent models to be compared two predictor objects are created. Results of each run

are stored and then paired t test is applied to the results.

3.4.4.2. Grid Search. Hyperparameter selection is done with grid search algorithm.

Selected parameter space is stored in a text file title “grid search space.txt”. The

script reads the parameter space from the file and runs the selected model for every

combination in the parameter space. The results of each script are printed into an

output text file.

36

4. EXPERIMENTS AND RESULTS

The results presented in this section focus on two areas. The first is the com-

parison of two neural networks widely used in extracting biomedical relations, and the

second is the assessment of the effectiveness of various linguistic features. The neural

networks compared in this study are CNN and BiLSTM, and the linguistic features

that have been assessed are position embeddings, POS tag embeddings, IOB chunk

tag embeddings and word embeddings. A grid search algorithm is used to tune the

hyperparameters of the model and the effectiveness of the features is determined via

a 5x2 cross validation paired t-test. The computing environment used for all of the

experiments in the study is shown in Table 4.1.

Table 4.1. Computing environment.

Parameter Values

Operating System Ubuntu 18.04.2 LTS

IDE PyCharm 2019 1.0

CPU Model Intel 7700K 4.20GHZ

GPU Model GTX1060

GPU Memory 6GB

Python Version 3.6.1

CUDA Version 10

Tensorflow Version 1.13.1

4.1. Training Domain of Word Embeddings

Word2vec is a widely used method for word representation in Natural Language

Processing [42]. The focus of the experiments in this section is to assess the significance

of the training set domain to word embedding effectiveness when the embeddings are

used in the biomedical relation extraction task. The effect of the training set domain

37

in embedding impact is analyzed with two different neural network models: BiLSTM

and CNN. Two different domains are compared in the experiments: Wikipedia and

biomedical articles. Word embeddings that are trained from biomedical articles are

obtained from the work of Chiu et al. [40]. Network parameters that are used in the

work of Chie et al. are depicted in Table 4.2. The same parameters are used in the

training of word embeddings with Wikipedia articles. Gensim library is used to train

the word embeddings from Wikipedia articles [43]. Negative sampling is selecting a

subset of the negative output nodes to be updated randomly. The vector dimension

defines the number of nodes in the hidden layer. The learning rate is a scalar that

defines the effect of the gradient to weight update. Sub-sampling is filtering frequent

words randomly. Context window size refers to the window size in the creation of word

pairs in training. Minimum-count defines the minimum number of occurrences for a

word to be included in the dataset.

Table 4.2. Word2vec network parameters.

Parameter Values

Architecture skip-gram

Negative sample size (neg) 10

Vector dimension (dim) 200

Learning Rate (alpha) 0.05

Sub-sampling (samp) 1e-4

Context window size (win) 2

Minimum-count(min-count) 5

4.1.1. Bidirection LSTM

Two different domains are compared via the BiLSTM model that is explained in

Section 3.3.1. Hyperparameter values of the BiLSTM network are depicted in Table

4.4. 5x2 cross validation t-test is used to determine if the difference is significant or

not. The total dataset is shuffled and divided into two parts in each iteration.

38

Table 4.3. Results of word embedding comparison with BiLSTM.

Iteration Fold
F1-Measure

Wikipedia Pubmed

1 1 0.654 0.686

1 2 0.646 0.693

2 1 0.630 0.671

2 2 0.542 0.653

3 1 0.662 0.691

3 2 0.643 0.692

4 1 0.644 0.683

4 2 0.651 0.688

5 1 0.635 0.660

5 2 0.640 0.635

Mean 0.637 0.681

Standard

Deviation
0.037 0.014

t value 4.8645

Table 4.4. BiLSTM model parameters used in word embedding comparison.

Network Parameter Value

Batch Size 50

LSTM Hidden Unit Size 128

Word Embedding Size 200

Learning Rate 0.001

39

The f1-measure value of each run is listed in Table 4.3. The t value is 4.8645

and the confidence interval is selected as 95%. The difference is statistically significant

thus, we can conclude that using a biomedical domain for word embedding training is

beneficial if the selected model is BiLSTM.

4.1.2. Convolutional Neural Network

Different domains for word embedding training are compared in Section 4.1.1 with

BiLSTM. The CNN model that is explained in Section 3.3.2 is used in this section to

compare different domains for word2vec training.

CNN model parameters are shown in Table 4.5. 5x2 cross validation t-test results

are shown in Table 4.6. F1-measure values are lower than the values obtained by the

BiLSTM values. The t value is 4.2181 and a 95% confidence interval is selected. The

difference between domains is statistically significant and we can conclude that using

a biomedical domain for word embedding training is beneficial with the CNN model

similar to the BiLSTM model.

Table 4.5. CNN model parameters used in word embedding comparison.

Network Parameter Value

Batch Size 50

Filter 1 Size 2, 200

Filter 2 Size 3, 200

Filter 3 Size 4, 200

Word Embedding Size 200

Learning Rate 0.001

Hidden Unit Size 2048

40

Table 4.6. Results of word embedding comparison with CNN.

Iteration Fold
F1-Measure

Wikipedia Pubmed

1 1 0.528 0.541

1 2 0.504 0.531

2 1 0.529 0.541

2 2 0.512 0.539

3 1 0.519 0.533

3 2 0.537 0.537

4 1 0.514 0.517

4 2 0.516 0.547

5 1 0.478 0.510

5 2 0.509 0.545

Mean 0.517 0.534

Standard

Deviation
0.018 0.012

t value 4.2181

4.2. Trainable Word Embeddings

Pre-trained word embeddings are used in all experiments. A neural network

updates the network weights through an optimization algorithm. However, the model

can continue to learn word embeddings. The effect of word embedding training is

analyzed with both of the models. Only word embeddings are used as an input feature

in this set of experiments.

41

4.2.1. Bidirectional LSTM

The effect of training word embeddings through model optimization is analyzed

with the BiLSTM model in this section. The hyperparameter values of the BiLSTM

model are shown in Table 4.8. 5x2 cross validation f1-measure results are shown in

Table 4.7. The confidence interval is selected as 95% and the t value is 4.5480 thus, the

difference between using trainable and fixed word embeddings is statistically significant

based on the paired t-test. We can conclude that training word embedding through

network optimization is beneficial when using BiLSTM.

Table 4.7. Results of trainable vs. fixed word embedding comparison with BiLSTM.

Iteration Fold

F1-Measure

Trainable

Word Embedding

Fixed

Word Embedding

1 1 0.779 0.675

1 2 0.782 0.682

2 1 0.776 0.688

2 2 0.773 0.680

3 1 0.775 0.632

3 2 0.785 0.678

4 1 0.664 0.556

4 2 0.668 0.547

5 1 0.695 0.699

5 2 0.687 0.675

Mean 0.739 0.662

Standard

Deviation
0.052 0.068

t value 4.5480

42

Table 4.8. BiLSTM parameters in trainable vs. fixed word embedding comparison.

Network Parameter Value

Batch Size 50

LSTM Hidden Unit Size 128

Word Embedding Size 200

Learning Rate 0.001

4.2.2. Convolutional Neural Network

The effect of trainable word embeddings is also analyzed with convolutional neural

networks. CNN parameters that are used in 5x2 cross validation are listed in Table 4.9

and the result of each run are shown in Table 4.10. The confidance interval is selected

as 95% and t value is 6.3202. The difference is significant based on paired t-test.

Table 4.9. CNN parameters in trainable vs. fixed word embedding comparison.

Network Parameter Value

Batch Size 50

Filter 1 Size 2, 200

Filter 2 Size 3, 200

Filter 3 Size 4, 200

Word Embedding Size 200

Learning Rate 0.001

Hidden Unit Size 2048

43

Table 4.10. Results of trainable vs. fixed word embedding comparison with CNN.

Iteration Fold

F1-Measure

Trainable

Word Embedding

Fixed

Word Embedding

1 1 0.559 0.480

1 2 0.552 0.467

2 1 0.554 0.480

2 2 0.559 0.485

3 1 0.539 0.503

3 2 0.485 0.458

4 1 0.537 0.491

4 2 0.590 0.523

5 1 0.427 0.424

5 2 0.536 0.492

Mean 0.534 0.480

Standard

Deviation
0.045 0.026

t value 6.3202

4.3. Position Embedding Experiments

The position embedding of a token refers to its distance to the first and second

entity. The experiments in this section aim to determine the importance of position

embeddings in biomedical relation extraction. Position embeddings are derived from

raw data. The importance of position embeddings is tested with BiLSTM and CNN.

The grid search algorithm is applied to find the best set of hyperparameters.

44

4.3.1. Bidirectional LSTM

The effect of the position feature is firstly evaluated with BiLSTM. The grid

search algorithm is used to find the optimal hyperparameter set of the model. The

grid search space is shown in Table 4.12. Some results are selected for reporting and

the selected results are listed in Table 4.11. The training and development sets are used

in grid search, the model is trained with the training set and the models are compared

on the development set. 5x2 cross validation paired t-test is used to determine the effect

of the position feature. The training, development and test sets are concatenated and

spitted into two. Each fold is used as a test set. 5x2 cross validation results are shown

in Table 4.13. The confidance interval is selected as 95% and the t value is 7.1616 which

shows that the difference is extremely significant. We are able to conclude that position

features are beneficial with BiLSTM in the biomedical relation extraction task.

Table 4.11. Selected BiLSTM grid search results for position embedding.

Position

Embedding Size

Learning

Rate

Number

of Units
Precision Recall F1-Measure

10 0.001 128 0.62 0.61 0.62

20 0.001 128 0.61 0.61 0.61

10 0.001 256 0.61 0.63 0.62

20 0.001 512 0.60 0.64 0.62

Table 4.12. BiLSTM grid search space for position embedding experiments.

Parameter Values

Hidden Unit Size 128, 256, 512

Position Embedding Size 10, 20, 50, 100

Learning Rate 0.01, 0.001

45

Table 4.13. Results of position embedding experiments with BiLSTM.

Iteration Fold
F1-Measure

Position Embedding No Position Embeddings

1 1 0.789 0.772

1 2 0.793 0.777

2 1 0.789 0.783

2 2 0.789 0.777

3 1 0.776 0.746

3 2 0.779 0.765

4 1 0.783 0.775

4 2 0.784 0.766

5 1 0.793 0.777

5 2 0.788 0.775

Mean 0.786 0.771

Standard

Deviation
0.005 0.010

t value 7.1616

4.3.2. Convolutional Neural Network

The BiLSTM model can benefit from position information of the token. The

position feature is also tested with CNN in this section. The grid search algorithm is

used to find the best set of hyperparameters. Only hidden unit, filter size, and position

embedding size are selected to be included in the grid search, all hyperparameters could

not be included in the grid search because of computational limitations. The hidden

unit size represents the number of hidden units in the fully connected layer. Filter size

represents the number of each filter type in the convolution layer. The grid search space

is depicted in Table 4.15. The selected grid search results are shown in Table 4.14. The

46

confidence interval is selected as 95% and the t value is 0.9525 thus, the difference is

not statistically significant. We concluded that the position feature of a token is not

beneficial with CNN contradictory to the results obtained with the BiLSTM model.

Table 4.14. Selected CNN grid search results for position embedding.

Position

Embedding Size

Number

of Units

Number

of Filters
Precision Recall F1-Measure

10 2048 200 0.48 0.69 0.56

10 2048 250 0.50 0.65 0.57

50 2048 250 0.50 0.58 0.54

20 2048 300 0.49 0.64 0.56

50 2048 300 0.49 0.64 0.56

10 2048 350 0.49 0.69 0.57

20 4096 150 0.54 0.54 0.54

10 4096 200 0.49 0.59 0.53

10 4096 250 0.51 0.62 0.56

10 4096 300 0.50 0.65 0.57

50 4096 300 0.45 0.75 0.57

Table 4.15. CNN grid search space for position embedding experiments.

Parameter Values

Hidden Unit 2048, 4096

Filter Size 150, 200, 250, 300, 350

Position Embedding Size 10, 20, 50, 100

47

Table 4.16. Results of position embedding experiments with CNN.

Iteration Fold
F1-Measure

Position Embedding No Position Embeddings

1 1 0.660 0.668

1 2 0.662 0.659

2 1 0.647 0.668

2 2 0.675 0.703

3 1 0.685 0.665

3 2 0.681 0.655

4 1 0.653 0.690

4 2 0.650 0.664

5 1 0.651 0.655

5 2 0.662 0.658

Mean 0.663 0.669

Standard

Deviation
0.013 0.015

t value 0.9525

4.4. POS Tag Embedding Experiments

Part of speech tag is a linguistic feature of a token and the feature is obtain via

NLTK. Part of speech tag is explained in Section 3.2 in detail. Two neural models are

used to determine the effect of the POS tag feature in biomedical relation extraction.

Grid search algorithm is used to find the best set of hyperparameters for each model.

48

4.4.1. Bidirectional LSTM

Part of speech tags are included into the input representation and the BiLSTM

model is run with the newly created input representation. Grid search space is depicted

in Table 4.19. The selected experiments from grid search are shown in Table 4.18.

5x2 cross validation is applied to determine the effect of POS tag embeddings with

the BiLSTM model. The results of 5x2 cross validation are shown in Table 4.17.

The confidence interval is 95% and t value is 1.6722 thus, we conclude that POS tag

embeddings are not beneficial when they are used with the BiLSTM model.

Table 4.17. Results of POS tag embedding experiments with BiLSTM.

Iteration Fold
F1-Measure

POS Tag Embedding No POS Tag Embeddings

1 1 0.787 0.787

1 2 0.794 0.793

2 1 0.795 0.794

2 2 0.792 0.797

3 1 0.790 0.790

3 2 0.799 0.791

4 1 0.788 0.792

4 2 0.714 0.697

5 1 0.726 0.721

5 2 0.721 0.703

Mean 0.769 0.766

Standard

Deviation
0.038 0.041

t value 1.6722

49

Table 4.18. Selected BiLSTM grid search results for POS tag embedding.

Position

Embedding Size

POS Tag

Size

Number

of Units
Precision Recall F1-Measure

10 20 256 0.58 0.69 0.63

10 10 256 0.60 0.67 0.63

10 50 256 0.59 0.67 0.63

20 10 256 0.58 0.70 0.64

20 50 256 0.59 0.69 0.64

Table 4.19. BiLSTM grid search space for POS tag embedding experiments.

Parameter Values

Hidden Unit Size 128, 256, 512

Position Embedding Size 10, 20, 50, 100

POS Tag Embedding Size 10, 20, 50, 100

4.4.2. Convolutional Neural Network

POS tag information of a token is not beneficial when BiLSTM model is used as a

predictor as analyzed in Section 4.4.1. POS tags are also analyzed with the CNN model.

Grid search is applied with CNN in order to obtain the best set of hyperparameters.

The parameter space for grid search is shown in Table 4.20. Selected runs from grid

search are listed in Table 4.22. 5x2 cross validation paired t-test results are shown in

Table 4.21. The confidence interval is selected as 95% and the t value is 3.6809. Based

on the 5x2 cross validation paired t-test, we concluded that POS tag information of a

token is beneficial when CNN model is used as a predictor.

50

Table 4.20. CNN grid search space for POS tag embedding experiments.

Parameter Values

Number of Filters 150, 200, 250, 300

Position Embedding Size 10, 20

POS Tag Embedding Size 10, 20, 50

Table 4.21. Results of POS tag embedding experiments with CNN.

Iteration Fold
F1-Measure

POS Tag Embedding No POS Tag Embeddings

1 1 0.612 0.588

1 2 0.625 0.609

2 1 0.619 0.603

2 2 0.618 0.606

3 1 0.609 0.607

3 2 0.602 0.576

4 1 0.593 0.565

4 2 0.589 0.588

5 1 0.601 0.604

5 2 0.607 0.601

Mean 0.608 0.595

Standard

Deviation
0.011 0.015

t value 3.6809

51

Table 4.22. Selected results of the CNN grid search for POS tag embedding.

Position

Tag Size

POS

Tag Size

Filter

Number

Unit

Number
Precision Recall F1-Measure

10 50 200 4096 0.39 0.82 0.53

10 50 250 4096 0.49 0.68 0.57

10 50 300 4096 0.62 0.31 0.41

20 50 250 4096 0.51 0.55 0.53

20 70 250 4096 0.49 0.64 0.56

10 70 250 4096 0.37 0.86 0.52

10 50 300 4096 0.62 0.31 0.41

10 50 300 8192 0.43 0.76 0.55

10 50 250 8192 0.76 0.18 0.29

10 50 250 8192 0.39 0.75 0.52

4.5. IOB Chunk Embedding Experiments

Chunking is a linguistic feature like POS tagging. Chunking refers to token

grouping in the text and inside-out-beginning format is used to represent chunks. Noun

phrase, verb phrase, and prepositional phrase are used in chucking. Extraction of IOB

chunks and adding IOB chunk to input are explained in Section 3.2 in detail. The

effect of chucking is analyzed with CNN and BiLSTM in this section.

4.5.1. Bidirectional LSTM

IOB chunk feature is included in the input representation for this set of exper-

iments. Grid search is applied in order to find the best set of hyperparameters. The

grid search space is shown in Table 4.24. The grid search results are listed in Table

4.25. 5x2 cross validation paired t-test is used to determine the effect of chunking.

52

The results of 5x2 cross validation are listed in Table 4.23. The confidence interval

is selected as 95% and the t value is 0.2376. We concluded that the chunking is not

beneficial when it is used with BiLSTM.

Table 4.23. Results of IOB tag embedding experiments with BiLSTM.

Iteration Fold
F1-Measure

IOB Tag Embedding No IOB Tag Embeddings

1 1 0.710 0.708

1 2 0.720 0.718

2 1 0.719 0.716

2 2 0.715 0.714

3 1 0.711 0.714

3 2 0.709 0.716

4 1 0.696 0.682

4 2 0.712 0.713

5 1 0.687 0.695

5 2 0.701 0.709

Mean 0.708 0.708

Standard

Deviation
0.010 0.011

t value 0.2376

Table 4.24. BiLSTM grid search space for IOB tag embedding experiments.

Parameter Values

Number of Hidden Units 250

Position Embedding Size 10, 20

POS Tag Embedding Size 20, 50, 70

IOB Chunk Tag Embedding Size 20, 50, 70

53

Table 4.25. Selected BiLSTM grid search results for IOB embedding.

Position

Size

POS Tag

Size

IOB Tag

Size
Precision Recall F1-Measure

10 20 20 0.59 0.67 0.63

20 70 50 0.60 0.65 0.63

20 50 20 0.62 0.60 0.61

10 70 50 0.63 0.58 0.60

4.5.2. Convolutional Neural Network

Chunking is not beneficial when it is used with BiLSTM as explained in Section

4.5.1. Chunking is also tested with convolutional neural network, in order to determine

the effect of chunking on biomedical relation extraction.

Table 4.26. Selected CNN grid search results for IOB embedding.

Filter

Number

Position

Tag Size

POS Tag

Size

IOB Tag

Size
Precision Recall F1-Measure

150 10 10 10 0.46 0.69 0.55

150 20 20 10 0.45 0.69 0.55

200 10 20 50 0.34 0.92 0.50

200 10 50 50 0.40 0.79 0.53

200 20 50 20 0.49 0.65 0.56

250 20 50 10 0.47 0.63 0.54

300 20 50 20 0.44 0.72 0.55

300 50 50 50 0.40 0.84 0.54

54

Table 4.27. CNN grid search space for IOB tag embedding experiments.

Parameter Values

Number of Filters 150, 200, 250, 300

Position Embedding Size 10, 20

POS Tag Embedding Size 10, 20, 50

IOB Chunk Tag Embedding Size 10, 20, 50

Table 4.28. Results of IOB tag embedding experiments with CNN.

Iteration Fold
F1-Measure

IOB Tag Embedding No IOB Tag Embeddings

1 1 0.630 0.624

1 2 0.612 0.602

2 1 0.627 0.638

2 2 0.611 0.621

3 1 0.618 0.630

3 2 0.622 0.604

4 1 0.602 0.615

4 2 0.602 0.561

5 1 0.606 0.610

5 2 0.595 0.600

Mean 0.612 0.610

Standard

Deviation
0.011 0.021

t value 0.3668

55

Noun phrase, verb phrase and prepositional phrase are included in the input

representation. POS tag embeddings and position embeddings are also included in the

input. Grid search is applied to find the optimal solution and grid search space is

shown in Table 4.27. Selected experiments from grid search are shown in Table 4.26.

The best recall score based on the grid search results is obtained by convolutional

neural network with IOB chunk tag embeddings. The results of 5x2 cross validation

paired t-test are shown in Table 4.28. Confidence interval is selected as 95% and the

t value is 0.3668. The difference is not statistically significant thus we concluded that

IOB chunking is not beneficial for CNN model similarly BiLSTM.

4.6. Test Set Evaluations

The grid search applied through Section 4.1 to Section 4.5 used the training and

development sets. For 5x2 cross validation paired t-test, the whole dataset is concate-

nated and splitted into two parts. In this section, the training set is used for training

and the test set is only used for testing purposes. The best set of hyperparameters is

selected for both of the models. The best set of hyperparameters is obtained by grid

search that is evaluated in Section 4.1 to Section 4.5. The model parameters of CNN

are shown in Table 4.32 and the model parameters of BiLSTM are shown in Table 4.31.

Subsampling is also tested in this section. Negative labelled candidate relations

that occur in positively labelled candidate relations are filtered for subsampling. Sub-

sampling results are listed in Table 4.29. We concluded that subsampling method is

not beneficial when it is tested on the test set. Both of the models perform similarly

when they are both trained with training set and evaluated on the test set. Average

precision is also tested in this section. The results for average precision are listed in

Table 4.30.

56

Table 4.29. Evaluation of selected best models on the test set.

Model Sub-sampling Precision Recall F1-measure

CNN Yes 0.46 0.69 0.55

CNN No 0.51 0.66 0.57

BiLSTM Yes 0.41 0.88 0.56

BiLSTM No 0.55 0.57 0.56

Table 4.30. Average precision of selected models on the test set.

Model Sub-sampling 0.9 0.8 0.7 0.6 0.5

CNN Yes 0.46 0.46 0.46 0.46 0.46

CNN No 0.56 0.55 0.55 0.55 0.55

BiLSTM Yes 0.56 0.53 0.51 0.49 0.48

BiLSTM No 0.65 0.64 0.63 0.62 0.61

Table 4.31. The selected best BiLSTM model.

Parameter Value

Hidden unit size 256

Position embedding size 10

Batch size 50

Learning rate 0.001

57

Table 4.32. The selected best CNN model.

Parameter Value

Filter out 250

Hidden unit size 4096

Filter1 size (2, 260)

Filter2 size (3, 260)

Filter3 size (4, 260)

Position embedding size 10

POS tag embedding size 50

Batch size 50

Learning rate 0.001

58

5. CONCLUSION

This thesis aimed to assess the effect of linguistic features and propose an artificial

neural network model for the task of biomedical relation extraction. The experiments

in Section 4.1 and 4.2 focus on improving the effectiveness of word embeddings for

biomedical relation extraction. The experiments in Sections 4.3, 4.4, and 4.5 are con-

ducted in order to assess the effects of including POS tag, IOB chunking, and position

information in the input representation. In light of the experiments that are conducted

in this thesis, valuable information about different neural network models and input

features can be inferred. With regard to neural network models, BiLSTM is found

to be superior to the CNN model when evaluated on the development set. However,

the models perform similarly when they are evaluated on the test set. Choosing the

biomedical domain for word embedding training has been shown to improve test per-

formance. Training word embeddings through model optimization has been shown to

improve performance for both models.

The word embedding experiments are aimed to compare word embeddings that

are trained with different training sets. Biomedical word embeddings are obtained

from the work of Chiu et al. [40] and Wikipedia word embeddings are trained with the

same parameters as the biomedical word embeddings. They are compared with both

of the models. The analysis of the effect of the training domain to word embedding

effectiveness for biomedical relation extraction is done in Section 4.1. We concluded

that the biomedical word embeddings are significantly improving the performance of

both models in biomedical relation extraction. Context information that is obtained

from the biomedical articles could be the reason behind the increase in the accuracy.

Section 4.2 aims to assess the effect of training word embeddings through the

model. Pre-trained word embeddings are used in this work. However, word embeddings

can also be trained through model optimization. We concluded that adding word

embeddings as variables to be optimized significantly increases the performance.

59

Position embeddings are valuable information in relation extraction tasks. The

preparation of position embeddings is explained in section 3.2 in detail. Position em-

beddings are added to word embeddings in input representation and tested with two

different models. Section 4.3 contains the analysis of the effect of position embedding

in biomedical relation extraction. Grid search is applied to each model in order to

obtain the optimal parameters. We concluded that the position information of a token

is beneficial for the BiLSTM model. However, we realized that CNN can not benefit

from position information as well as BiLSTM. 5x2 cross validation paired t-test is used

to determine the effect of position information. The CNN model has filters in three

different sizes, where each filter learns relations merely between 2, 3 or 4 tokens. Thus

the idea of the CNN model is based on localisation, which may be the reason why it

benefits less from the position information compared to BiLSTM.

POS tags are type of linguistic information derived from raw text. POS tags are

explained in Section 3.2. POS tag analysis is done in Section 4.4. Grid search is used

to find the optimal hyperparameter set. POS tags are added to input representation

and the models are evaluated with the new representation. 5x2 cross validation is used

to determine the effect of POS tag embeddings. Our results showed that BiLSTM can

not benefit from POS tag embeddings but POS tag information of a token is beneficial

for CNN. The reason why the BiLSTM model does not benefit from POS information

could be that BiLSTM learns this information internally.

IOB chunks are also linguistic information like POS tags. IOB chunks are ex-

plained in section 3.2 in detail. 5x2 cross validation paired t-test is used to assess the

effect of IOB chunk tags. Grid search is applied to find the optimal set of hyperparam-

eters for both of the models. The analysis is done in Section 4.5. We observe that IOB

chunks are not effective for both of the models. Chunking information could have been

learned by both of the models internally from the POS information. This might be the

reason why providing chunking information to the models externally did not result in

increase in the F-measure performance in Section 4.5.

60

Section 4.6 contains the performance of the selected best models over the test

set. We observed that both of the models perform similarly to each other with the best

set of hyperparameters. The subsampling method is also evaluated in Section 4.6. We

observed that subsampling method is not effective.

As future work, we plan to investigate the use of information that is derived

from dependency parsing. Also, new layers can be added to the deep learning models

and new models can be added to the comparison in this thesis. We concluded that

BiLSTM and CNN perform similarly to each other on the test set. However, BiLSTM

requires none of the linguistic information that are expensive to obtain in terms of time.

BiLSTM with merely word embeddings and position information performs similarly to

CNN with word embeddings, position information, POS tag information, and IOB tag

information.

61

REFERENCES

1. U.S. National Library of Medicine, Citations Added to MEDLINE R© by Fiscal Year ,

2019, https://www.nlm.nih.gov/bsd/stats/cit_added.html, accessed in June

2019.

2. Gilson, M. K., T. Liu, M. Baitaluk, G. Nicola, L. Hwang and J. Chong, “Bind-

ingDB in 2015: A public database for medicinal chemistry, computational chem-

istry and systems pharmacology”, Nucleic Acids Research, Vol. 44, No. D1, pp.

D1045–D1053, 2016.

3. Li, Y., Z. Liu, J. Li, L. Han, J. Liu, Z. Zhao and R. Wang, “Comparative assessment

of scoring functions on an updated benchmark: 1. Compilation of the test set”,

Journal of chemical information and modeling , Vol. 54, No. 6, pp. 1700–1716,

2014.

4. Hu, L., M. L. Benson, R. D. Smith, M. G. Lerner and H. A. Carlson, “Binding

MOAD (Mother Of All Databases)”, Proteins: Structure, Function, and Bioinfor-

matics , Vol. 60, No. 3, pp. 333–340.

5. Ahmed, A., R. D. Smith, J. J. Clark, J. B. Dunbar, Jr and H. A. Carlson, “Recent

improvements to Binding MOAD: a resource for protein–ligand binding affinities

and structures”, Nucleic Acids Research, Vol. 43, No. D1, pp. D465–D469, 2015.

6. Blundell, T. L. and K. Mizuguchi, “Structural genomics: an overview”, Progress in

biophysics and molecular biology , Vol. 5, No. 73, pp. 289–295, 2000.

7. Jeremy M Berg, J. L. T. and L. Stryer, Biochemistry , W.H. Freeman, New York,

5th edn., 2002.

8. Gilson, M. K. and H.-X. Zhou, “Calculation of protein-ligand binding affinities”,

Annu. Rev. Biophys. Biomol. Struct., Vol. 36, pp. 21–42, 2007.

62

9. Trott, O. and A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of

docking with a new scoring function, efficient optimization, and multithreading”,

J. Comput. Chem, pp. 455–461.

10. Li, Y., Z. Liu and R. Wang, “Test MM-PB/SA on true conformational ensembles

of protein−ligand Complexes”, Journal of Chemical Information and Modeling ,

Vol. 50, No. 9, pp. 1682–1692, 2010.

11. Hsin, K.-Y., S. Ghosh and H. Kitano, “Combining machine learning systems and

multiple docking simulation packages to improve docking prediction reliability for

network pharmacology”, PloS one, Vol. 8, No. 12, p. e83922, 2013.

12. Rosenblatt, F., “The perceptron: a probabilistic model for information storage and

organization in the brain.”, Psychological review , Vol. 65, No. 6, p. 386, 1958.

13. Minsky, M. and S. Papert, Perceptrons: An Introduction to Computational Geom-

etry , MIT Press, Cambridge, MA, USA, 1969.

14. Rumelhart, D. E., G. E. Hinton and R. J. Williams, “Learning representations by

back-propagating errors”, Nature, Vol. 323, No. 6088, pp. 533–536, oct 1986.

15. Hochreiter, S., “Untersuchungen zu dynamischen neuronalen Netzen”, Diploma,

Technische Universität München, Vol. 91, No. 1, 1991.

16. Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural computa-

tion, Vol. 9, No. 8, pp. 1735–1780, 1997.

17. Gers, F. A., J. Schmidhuber and F. A. Cummins, “Learning to Forget: Continual

Prediction with LSTM”, Neural Computation, Vol. 12, pp. 2451–2471, 2000.

18. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro et al., “Tensorflow:

Large-scale machine learning on heterogeneous distributed systems”, arXiv preprint

arXiv:1603.04467 , 2016.

63

19. Zaremba, W., I. Sutskever and O. Vinyals, “Recurrent neural network regulariza-

tion”, arXiv preprint arXiv:1409.2329 , 2014.

20. Sak, H., A. Senior and F. Beaufays, “Long short-term memory recurrent neural net-

work architectures for large scale acoustic modeling”, Fifteenth annual conference

of the international speech communication association, 2014.

21. Lecun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied

to document recognition”, Proceedings of the IEEE , Vol. 86, No. 11, pp. 2278–2324,

Nov 1998.

22. Matos, S., “Extracting chemical–protein interactions using long short-term memory

networks”, Proceedings of the BioCreative VI Workshop, pp. 151–154, 2017.

23. Liu, S., F. Shen, Y. Wang, M. Rastegar-Mojarad, R. K. Elayavilli, V. Chaud-

hary and H. Liu, “Attention-based neural networks for chemical protein relation

extraction”, Training , Vol. 1020, No. 25.247, p. 4157, 2017.

24. Warikoo, N., Y. Chang, P. Lai et al., “CTCPI–convolution tree kernel based

chemical-protein interaction detection”, Proceedings of 2017 BioCreative VI Work-

shop, Maryland, USA, October 2017 , pp. 168–171, 2017.

25. Yüksel, A., H. Öztürk, E. Ozkirimli, A. Özgür et al., “CNN based chemical-protein

interactions classification”, Proceedings of the BioCreative VI Workshop, Bethesda,

MD , pp. 184–186, 2017.

26. Corbett, P. and J. Boyle, “Improving the learning of chemical-protein interactions

from literature using transfer learning and specialized word embeddings”, Database,

Vol. 2018, 2018.

27. Tripodi, I., M. Boguslav, N. Hailu and L. Hunter, “Knowledge-base-enriched rela-

tion extraction”, Proceedings of the Sixth BioCreative Challenge Evaluation Work-

shop. Bethesda, MD USA, Vol. 1, pp. 163–6, 2017.

64

28. Mehryary, F., J. Björne, T. Salakoski and F. Ginter, “Combining support vector

machines and lstm networks for chemical protein relation extraction”, Proceedings

of the BioCreative VI Workshop, pp. 176–180, 2017.

29. Lim, S. and J. Kang, “Chemical–gene relation extraction using recursive neural

network”, Database, Vol. 2018, 2018.

30. Wang, W., X. Yang, Y. Xing, C. Wu and Z. Song, “Extracting chemical-protein

interactions via bidirectional long short-term memory network”, Proceedings of the

BioCreative VI Workshop, Bethesda, MD , pp. 171–174, 2017.

31. Peng, Y., A. Rios, R. Kavuluru and Z. Lu, “Chemical-protein relation ex-

traction with ensembles of SVM, CNN, and RNN models”, arXiv preprint

arXiv:1802.01255 , 2018.

32. Verga, P. and A. McCallum, “Predicting chemical protein relations with biaffine

relation attention networks”, Proceedings of the BioCreative VI Workshop, 2017.

33. Lung, P.-Y., Z. He, T. Zhao, D. Yu and J. Zhang, “Extracting chemical–protein

interactions from literature using sentence structure analysis and feature engineer-

ing”, Database, Vol. 2019, 2019.

34. Krallinger, M., O. Rabal, S. A. Akhondi et al., “Overview of the BioCreative VI

chemical-protein interaction Track”, Proceedings of the sixth BioCreative challenge

evaluation workshop, Vol. 1, pp. 141–146, 2017.

35. Peng, Y. and Z. Lu, “Deep learning for extracting protein-protein interactions from

biomedical literature”, arXiv preprint arXiv:1706.01556 , 2017.

36. Kavuluru, R., A. Rios and T. Tran, “Extracting drug-drug interactions with word

and character-level recurrent neural networks”, 2017 IEEE International Confer-

ence on Healthcare Informatics (ICHI), pp. 5–12, IEEE, 2017.

65

37. Peng, Y., A. Rios, R. Kavuluru and Z. Lu, “Extracting chemical–protein relations

with ensembles of SVM and deep learning models”, Database, Vol. 2018, 07 2018.

38. Mikolov, T., I. Sutskever, K. Chen, G. Corrado and J. Dean, “Distributed Repre-

sentations of Words and Phrases and Their Compositionality”, Proceedings of the

26th International Conference on Neural Information Processing Systems - Volume

2 , NIPS’13, pp. 3111–3119, Curran Associates Inc., USA, 2013.

39. Bird, S., E. Klein and E. Loper, Natural Language Processing with Python, O’Reilly

Media, Inc., 1st edn., 2009.

40. Chiu, B., G. Crichton, A. Korhonen and S. Pyysalo, “How to train good word

embeddings for biomedical NLP”, Proceedings of the 15th workshop on biomedical

natural language processing , pp. 166–174, 2016.

41. Kim, Y., “Convolutional neural networks for sentence classification”, arXiv preprint

arXiv:1408.5882 , 2014.

42. Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed rep-

resentations of words and phrases and their compositionality”, C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger (Editors), Advances

in Neural Information Processing Systems 26 , pp. 3111–3119, Curran Associates,

Inc., 2013.

43. Řehůřek, R. and P. Sojka, “Software Framework for Topic Modelling with Large

Corpora”, Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks , pp. 45–50, ELRA, Valletta, Malta, May 2010.

